This document describes how to determine parameters for the effective Hamiltonian in the feram code http://loto.sourceforge.net/feram/ . We determine the parameters for BaTiO3 from first-principles calculations. Theories in background are written in [Takeshi Nishimatsu, Masaya Iwamoto, Yoshiyuki Kawazoe, and Umesh V. Waghmare: "First-principles accurate total-energy surfaces for polar structural distortions of BaTiO3, PbTiO3, and SrTiO3: consequences to structural transition temperatures", Phys. Rev. B, vol.82, p.134106 (2010) http://dx.doi.org/10.1103/PhysRevB.82.134106 ]. Equations referred in this document are those ones in the PRB article.
You may find latest version of this document in http://loto.sourceforge.net/feram/parameters/ . You can also find this document and input files in the feram source package, feram-X.YY.ZZ.tar.gz.
Pseudopotentials BaTiO3-WuCohenGGA/ba.wcgga.fhi, BaTiO3-WuCohenGGA/ti.wcgga.fhi, and BaTiO3-WuCohenGGA/o.wcgga.fhi are generated by Opium http://opium.sourceforge.net/ . BaTiO3-WuCohenGGA/ba.param, BaTiO3-WuCohenGGA/ti.param, and BaTiO3-WuCohenGGA/o.param are input parameter files for Opium.
Wu and Cohen's GGA [Z. G. Wu and R. E. Cohen, Phys. Rev. B 73, 235116 (2006) http://dx.doi.org/10.1103/PhysRevB.73.235116 ] is employed.
With BaTiO3-WuCohenGGA/perovskite-a0.in and BaTiO3-WuCohenGGA/perovskite-a0.files, we can determine the equilibrium lattice constant a0. For example, execute abinit with
% mpirun -np 4 ./abinit < perovskite-a0.files > perovskite-a0.log
or
% sh perovskite-a0.nqs
where BaTiO3-WuCohenGGA/perovskite-a0.nqs is a system-dependent queueing script. With this calculation, we determine that
a0 = 3.98596 [Angstrom] = 7.5323692530 [Bohr].
With BaTiO3-WuCohenGGA/perovskite-B1112.in, BaTiO3-WuCohenGGA/perovskite-B1112.files, BaTiO3-WuCohenGGA/perovskite-B1112.nqs and BaTiO3-WuCohenGGA/perovskite-B1112.gp files, we can determine elastic constants B11 and B12. Note that the previous result a0=7.5323692530 [Bohr] is used in BaTiO3-WuCohenGGA/perovskite-B1112.in.
% emacs perovskite-B1112.in # Write a0 for the acell parameter. % sh perovskite-B1112.nqs # perovskite-B1112.dat1 and perovskite-B1112.dat1 will be made. % gnuplot perovskite-B1112.gp : DATASET 1 -- 9 a0 = 7.5323909483511 [Bohr] = 3.98596961387263 [Angstrom] Emin = -3574.58001772059 [eV] B = 177.307024161185 [GPa] DATASET 10 -- 19 a0 = 7.53357884227272 [Bohr] = 3.98659822026182 [Angstrom] Emin = -3574.5800592618 [eV] B11 = 126.731671475652 [eV] C11 = 320.626887681826 [GPa] Compute B12 B12 = 41.7582963902597 [eV] C12 = 105.647092400865 [GPa] % gv perovskite-B1112.eps
We can also check a value of B11-B12 with files of BaTiO3-WuCohenGGA/perovskite-B11-12.in, BaTiO3-WuCohenGGA/perovskite-B11-12.files, BaTiO3-WuCohenGGA/perovskite-B11-12.nqs, BaTiO3-WuCohenGGA/perovskite-B11-12.delta and BaTiO3-WuCohenGGA/perovskite-B11-12.gp as follows:
% emacs perovskite-B11-12.in # Write a0 for the acell parameter. % sh perovskite-B11-12.nqs # perovskite-B11-12.dat will be made. % gnuplot perovskite-B11-12.gp : B11-B12 = 81.7753050280732 [eV] % gv perovskite-B11-12.eps
B44 can be calculated with BaTiO3-WuCohenGGA/perovskite-B44.in, BaTiO3-WuCohenGGA/perovskite-B44.files, BaTiO3-WuCohenGGA/perovskite-B44.nqs, BaTiO3-WuCohenGGA/perovskite-B44.delta and BaTiO3-WuCohenGGA/perovskite-B44.gp files as follows:
% emacs perovskite-B44in # Write a0 for the acell parameter. % sh perovskite-B44.nqs # perovskite-B44.dat will be made. % gnuplot perovskite-B44.gp : B44 = 49.2408864348646 [eV] % gv perovskite-B44.eps
We determine the potential surface of ABO3 with the method described in [T. Hashimoto, T. Nishimatsu, H. Mizuseki, Y. Kawazoe, A. Sasaki and Y. Ikeda: Jpn. J. Appl. Phys. 43, 6785-6792 (2004) http://dx.doi.org/10.1143/JJAP.43.6785 ].
We apply our original patch to ABINIT, rename from abinit to abinit-xyz, then use it. This brdmin-6.2.3-2011-07-01.patch is applicable to abinit-6.2.3.
% tar zxf abinit-6.2.3.tar.gz % cd abinit-6.2.3 % mkdir x86_64-Linux-mpif90-gfortran-4.3.3-O3-perovskite-xyz % cd x86_64-Linux-mpif90-gfortran-4.3.3-O3-perovskite-xyz/ % ../configure FC=mpif90 --enable-mpi --with-mpi-level=2 --disable-netcdf --disable-libxc --disable-etsf-io % cd src/95_drive/ % cp ../../../src/21drive/brdmin.F90 . % cp ../../../src/21drive/brdmin_init.F90 . % cp ../../../src/21drive/interfaces_95_drive.F90 . % patch -p0 < SOMEWERE/brdmin-6.2.3-2011-07-01.patch % cd ../.. % make % cd src/main % mv abinit abinit-xyz
Generate input files with each ruby script in the directory BaTiO3-WuCohenGGA.
% emacs perovskite-optcell*.rb # Write a0 for the acell parameter. % ruby perovskite-optcell2-001.rb # => perovskite-optcell2-001.in % ruby perovskite-optcell2-110.rb # => perovskite-optcell2-110.in % ruby perovskite-optcell2-111.rb # => perovskite-optcell2-111.in
% sh perovskite-optcell2-001.nqs # results in perovskite-optcell2-001.dat % sh perovskite-optcell2-110.nqs # results in perovskite-optcell2-110.dat % sh perovskite-optcell2-111.nqs # results in perovskite-optcell2-111.dat
It is quite difficult to express the total-energy surfaces even with up to 8th order polynomial in wide range of u. Therefore, we fit Eqs. (14a)--(14c) only to the calculated data points within narrow range of u. E0, a0, B11, B12, and B44 must be written in BaTiO3-WuCohenGGA/perovskite-optcell2.gp.
% emacs perovskite-optcell2-001-narrow.dat # narrow range of u of perovskite-optcell2-001.dat % emacs perovskite-optcell2-110-narrow.dat # narrow range of u of perovskite-optcell2-110.dat % emacs perovskite-optcell2-111-narrow.dat # narrow range of u of perovskite-optcell2-111.dat % ./perovskite-optcell2.gp : B1xx = -185.347187551195 [eV/Angstrom^2] B1yy = -3.28092949275452 [eV/Angstrom^2] B4yz = -14.5501738943852 [eV/Angstrom^2] P_k1 = -267.980139917128 [eV/Angstrom^6] P_k2 = 197.500718362569 [eV/Angstrom^6] P_k3 = 830.19997929324 [eV/Angstrom^6] P_k4 = 641.968099408291 [eV/Angstrom^8] P_alpha = 78.9866142426711 [eV/Angstrom^4] P_gamma = -115.484148812671 [eV/Angstrom^4] #kappa = -1.51821042113559 [eV/Angstrom^2] <=== We will also use this value to determine P_kappa2. % gv perovskite-optcell2.eps
The direction to the minimum can be calculated with input files of BaTiO3-WuCohenGGA/perovskite-tetragonal.in and BaTiO3-WuCohenGGA/perovskite-tetragonal.files. The program feram-X.YY.ZZ/src/displacement.F help us to calculate the normalized vector.
% ./abinit < perovskite-tetragonal.files > perovskite-tetragonal.log % feram-X.YY.ZZ/src/displacement < perovskite-tetragonal.out xred 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.291 0.718 -0.235 -0.235 -0.538 removed translations: 0.000000000 0.000000000 -0.000000000 % feram-X.YY.ZZ/src/displacement < perovskite-optcell2-001.out > perovskite-optcell2-001.dsp # check the xi_z(u)
Eigenvalues and eigenvectors of IFC matrix at the Gamma point can be calculated with frozen phonon calculations at the Gamma. The program feram-X.YY.ZZ/src/frozen_phonon_Gamma.F help us to do it. These eigenvalues and eigenvectors must be similar to those of calculated from following response-function calculations.
% sh perovskite-frozen-phonon-Gamma.nqs # perovskite-frozen-phonon-Gamma.dat will be made. % feram-X.YY.ZZ/src/frozen_phonon_Gamma # this program reads perovskite-frozen-phonon-Gamma.dat a0 = 3.9859580 [Angstrom] eigenvalues [eV/Angstrom^2] and eigenvectors of force_constant_matrix 1 -3.982367 0.1648 0.7726 -0.2003 -0.2003 -0.5438 <=== Gamma_15 soft mode 2 0.058552 0.4511 0.4482 0.4458 0.4458 0.4451 3 4.682338 -0.0000 0.0000 0.7071 -0.7071 0.0000 4 8.125787 0.8555 -0.3118 -0.2915 -0.2915 0.0309 5 13.605841 -0.1936 0.3240 -0.4197 -0.4197 0.7108
We perform some response-function calculations with ABINIT (RF calculations, See http://www.abinit.org/documentation/helpfiles/for-v6.8/tutorial/lesson_rf1.html and [Xavier Gonze and Chngyol Lee: Phys. Rev B vol.55, pp.10355-10368 (1997) http://dx.doi.org/10.1103/PhysRevB.55.10355 ]) to determine optical dielectric constant epsilon_inf, effective charge Z_star, effective mass mass_amu, self interaction P_kappa2, and short range interactions j1, ..., j7. We do NOT move ions explicitly.
We calculate interatomic force constant (IFC) matrices at the Gamma, X, M and R points and at the center of the Sigma axis. Input fies are BaTiO3-WuCohenGGA/force-constant-matrix/perovskite-Gamma.in, BaTiO3-WuCohenGGA/force-constant-matrix/perovskite-M.in, BaTiO3-WuCohenGGA/force-constant-matrix/perovskite-R.in, BaTiO3-WuCohenGGA/force-constant-matrix/perovskite-Sigma.in and BaTiO3-WuCohenGGA/force-constant-matrix/perovskite-X.in. Write determined a0 for the acell parameters in each .in file. Adding "rfasr 1" in the input files may be a good idea. First, we need results of the Gamma point, perovskite-Gamma_o_DS1_WFK, then we can calculate other points.
% ./abinit < perovskite-Gamma.files > perovskite-Gamma.log % ./abinit < perovskite-M.files > perovskite-M.log % ./abinit < perovskite-R.files > perovskite-R.log % ./abinit < perovskite-Sigma.files > perovskite-Sigma.log % ./abinit < perovskite-X.files > perovskite-X.log
Using feram-X.YY.ZZ/src/diagonalize15x15.F, eigenvalues and eigenvectors of IFC matrices of each k-point are calculated. Dashed lines in Fig. 5 (B) is a plot of the eigenvalues of IFC matrices along symmetric axes in the first Brillouin zone. How to plot eigenvalues of IFC matrices is described in http://forum.abinit.org/viewtopic.php?f=12&t=1273 .
% ./diagonalize15x15 < perovskite-Gamma_o_DS3_DDB acell = 3.98596 3.98596 3.98596 [Angstrom] eigenvalues [eV/Angstrom^2] and eigenvectors of the matrix of interatomic force constants (IFCs) 1 -3.812330 0.001 -0.000 0.166 0.005 -0.000 0.770 -0.004 0.000 -0.202 -0.001 0.000 -0.202 -0.001 0.000 -0.546 <=== Gamma_15 soft mode 2 -3.812330 0.166 -0.000 -0.001 0.770 -0.000 -0.005 -0.546 0.000 0.001 -0.202 0.000 0.001 -0.202 0.000 0.004 3 -3.812320 0.000 0.166 0.000 0.000 0.770 0.000 -0.000 -0.202 -0.000 -0.000 -0.546 -0.000 -0.000 -0.202 -0.000 4 0.179744 -0.000 0.459 -0.000 -0.000 0.448 -0.000 -0.000 0.443 -0.000 -0.000 0.442 -0.000 -0.000 0.443 -0.000 5 0.179753 0.005 0.000 0.459 0.005 0.000 0.448 0.005 0.000 0.443 0.005 0.000 0.443 0.005 0.000 0.442 6 0.179753 -0.459 -0.000 0.005 -0.448 -0.000 0.005 -0.442 -0.000 0.005 -0.443 -0.000 0.005 -0.443 -0.000 0.005 7 4.818055 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 -0.000 0.707 0.000 -0.000 -0.707 -0.000 0.000 0.000 8 4.818055 0.000 -0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 0.000 -0.707 0.000 -0.000 0.707 -0.000 0.000 9 4.818055 -0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.707 0.000 0.000 0.000 -0.000 -0.000 -0.707 0.000 10 8.165232 0.003 -0.000 -0.852 -0.001 0.000 0.319 0.000 0.000 0.293 -0.001 -0.000 0.293 -0.001 0.000 -0.027 11 8.165232 -0.852 0.000 -0.003 0.319 -0.000 0.001 -0.027 -0.000 0.001 0.293 0.000 0.001 0.293 -0.000 -0.000 12 8.165234 0.000 0.852 -0.000 -0.000 -0.319 0.000 0.000 -0.293 0.000 -0.000 0.027 0.000 -0.000 -0.293 -0.000 13 13.740829 0.000 0.190 -0.000 -0.000 -0.325 0.000 -0.000 0.420 -0.000 0.000 -0.711 -0.000 0.000 0.420 0.000 14 13.740832 -0.190 0.000 -0.004 0.325 -0.000 0.007 0.711 0.000 -0.010 -0.420 -0.000 -0.010 -0.420 0.000 0.016 15 13.740832 0.004 -0.000 -0.190 -0.007 0.000 0.325 -0.016 -0.000 -0.420 0.010 0.000 -0.420 0.010 -0.000 0.711 % ./diagonalize15x15 < perovskite-X_o_DS1_DDB acell = 3.98596 3.98596 3.98596 [Angstrom] eigenvalues [eV/Angstrom^2] and eigenvectors of the matrix of interatomic force constants (IFCs) 1 -2.844890 -0.000 -0.000 0.000 -0.000 -0.808 -0.000 -0.000 -0.000 0.000 -0.000 0.540 0.000 -0.000 0.237 0.000 2 -2.844881 -0.000 -0.000 -0.000 -0.000 0.000 -0.808 -0.000 -0.000 0.000 0.000 -0.000 0.237 -0.000 -0.000 0.540 3 3.293016 0.000 -0.000 0.000 0.000 -0.000 -0.501 0.000 -0.000 -0.000 -0.000 -0.000 -0.759 0.000 -0.000 -0.415 4 3.293026 -0.000 0.000 -0.000 -0.000 0.501 -0.000 0.000 0.000 0.000 0.000 0.415 -0.000 -0.000 0.759 -0.000 5 5.647355 -0.000 -0.064 0.832 -0.000 0.000 0.000 -0.000 -0.042 0.550 -0.000 -0.000 0.000 -0.000 0.000 0.000 6 5.647355 -0.000 -0.832 -0.064 0.000 0.000 0.000 -0.000 -0.550 -0.042 0.000 -0.000 0.000 0.000 0.000 -0.000 7 6.306471 -0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000 -0.000 0.000 -0.707 -0.000 0.000 0.707 0.000 0.000 8 6.422750 0.000 -0.000 -0.000 -0.377 0.000 -0.000 0.000 0.000 0.000 -0.655 0.000 -0.000 -0.655 -0.000 -0.000 9 7.106444 0.000 0.007 -0.552 0.000 0.000 -0.000 0.000 -0.010 0.834 0.000 0.000 -0.000 0.000 -0.000 -0.000 10 7.106444 0.000 0.552 0.007 -0.000 0.000 0.000 0.000 -0.834 -0.010 -0.000 -0.000 0.000 -0.000 0.000 -0.000 11 10.605361 -0.922 0.000 0.000 -0.000 -0.000 -0.000 -0.388 -0.000 -0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.000 12 11.865325 -0.000 -0.000 0.000 0.000 0.311 0.000 -0.000 -0.000 -0.000 -0.000 0.732 -0.000 0.000 -0.606 0.000 13 11.865326 -0.000 0.000 -0.000 -0.000 -0.000 0.311 -0.000 -0.000 0.000 0.000 -0.000 -0.606 -0.000 0.000 0.732 14 27.604766 -0.388 -0.000 0.000 -0.000 -0.000 -0.000 0.922 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 15 34.256065 -0.000 -0.000 0.000 -0.926 -0.000 0.000 -0.000 -0.000 -0.000 0.266 0.000 0.000 0.266 -0.000 -0.000 % ./diagonalize15x15 < perovskite-M_o_DS1_DDB acell = 3.98596 3.98596 3.98596 [Angstrom] eigenvalues [eV/Angstrom^2] and eigenvectors of the matrix of interatomic force constants (IFCs) 1 -2.285745 -0.000 0.000 0.000 0.000 -0.000 0.885 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.466 2 2.701916 -0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.707 -0.000 0.707 -0.000 0.000 -0.000 -0.000 0.000 3 4.181197 0.000 0.563 -0.000 0.398 0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000 0.724 0.000 0.000 4 4.181213 -0.563 0.000 0.000 0.000 -0.398 -0.000 -0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 -0.724 0.000 5 5.930853 -0.000 -0.000 -1.000 -0.000 -0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 0.000 0.000 -0.000 -0.000 6 7.209251 -0.726 0.000 -0.000 0.000 -0.181 0.000 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.000 0.664 0.000 7 7.209255 0.000 0.726 -0.000 0.181 0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000 -0.664 -0.000 0.000 8 7.259426 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.705 0.000 -0.000 0.709 -0.000 -0.000 -0.000 9 7.259426 -0.000 0.000 0.000 0.000 -0.000 -0.000 0.000 -0.000 0.709 0.000 -0.000 -0.705 -0.000 0.000 -0.000 10 8.728420 0.000 -0.000 -0.000 -0.000 0.000 0.466 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 0.885 11 9.261847 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.707 -0.000 -0.000 -0.000 -0.707 0.000 0.000 0.000 -0.000 12 12.688868 -0.000 0.000 0.000 0.000 0.000 -0.000 0.000 0.707 0.000 0.707 -0.000 0.000 -0.000 -0.000 -0.000 13 29.698188 -0.000 0.000 -0.000 -0.000 0.000 -0.000 0.707 -0.000 0.000 0.000 0.707 0.000 0.000 -0.000 0.000 14 32.665709 -0.395 -0.000 0.000 0.000 0.899 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.187 0.000 15 32.665721 0.000 -0.395 0.000 0.899 -0.000 0.000 0.000 -0.000 -0.000 -0.000 0.000 -0.000 -0.187 0.000 0.000 % ./diagonalize15x15 < perovskite-R_o_DS1_DDB acell = 3.98596 3.98596 3.98596 [Angstrom] eigenvalues [eV/Angstrom^2] and eigenvectors of the matrix of interatomic force constants (IFCs) 1 2.094246 0.000 -0.000 -0.000 0.000 -0.000 0.000 -0.000 -0.500 -0.460 0.500 0.000 0.196 0.460 -0.196 0.000 2 2.094246 -0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.278 0.000 -0.000 0.650 -0.278 -0.650 -0.000 3 2.094246 -0.000 -0.000 0.000 0.000 -0.000 -0.000 0.000 -0.500 0.460 0.500 -0.000 -0.197 -0.460 0.197 0.000 4 7.635658 -0.000 -0.000 -0.000 -0.000 0.000 0.000 -0.740 0.000 0.000 0.000 0.071 -0.000 0.000 -0.000 0.669 5 7.635658 -0.000 -0.000 -0.000 0.000 0.000 0.000 -0.345 0.000 0.000 0.000 0.813 -0.000 0.000 -0.000 -0.468 6 8.895905 -0.000 0.000 0.978 -0.000 0.000 0.000 0.000 0.146 0.000 0.146 0.000 -0.000 0.000 -0.000 0.000 7 8.895914 0.700 -0.683 0.000 0.000 0.000 0.000 -0.000 0.000 -0.102 0.000 -0.000 0.105 -0.102 0.105 -0.000 8 8.895914 -0.683 -0.700 -0.000 0.000 -0.000 -0.000 0.000 -0.000 -0.105 -0.000 0.000 -0.102 -0.105 -0.102 0.000 9 10.557109 0.147 -0.146 0.000 0.000 0.000 0.000 -0.000 -0.000 0.488 -0.000 -0.000 -0.490 0.488 -0.490 -0.000 10 10.557109 0.146 0.147 0.000 -0.000 0.000 0.000 -0.000 -0.000 -0.490 -0.000 -0.000 -0.488 -0.490 -0.488 -0.000 11 10.557118 0.000 -0.000 -0.207 0.000 0.000 0.000 0.000 0.692 0.000 0.692 -0.000 -0.000 0.000 -0.000 -0.000 12 27.741413 0.000 -0.000 -0.000 -0.707 -0.500 -0.500 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 -0.000 0.000 13 27.741413 0.000 -0.000 0.000 -0.001 -0.707 0.707 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.000 0.000 14 27.741413 -0.000 -0.000 -0.000 -0.707 0.500 0.500 0.000 0.000 0.000 0.000 -0.000 0.000 0.000 0.000 -0.000 15 32.573120 -0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.577 -0.000 -0.000 -0.000 -0.577 0.000 -0.000 0.000 -0.577 % ./diagonalize15x15 < perovskite-Sigma_o_DS1_DDB acell = 3.98596 3.98596 3.98596 [Angstrom] 1 -2.839858 0.00 0.00 -0.00 0.00 0.11-0.00 0.00 0.00 0.00-0.00 0.00 0.83 -0.00-0.00 -0.00-0.00 -0.09-0.09 -0.00-0.00 -0.00-0.00 -0.09-0.09 0.00-0.00 0.00-0.00 -0.00-0.51 2 1.994966 0.34 0.00 -0.34 0.00 -0.00-0.00 0.00 0.28 -0.00-0.28 0.00-0.00 0.15 0.15 -0.28-0.28 -0.00-0.00 0.28 0.28 -0.15-0.15 -0.00-0.00 -0.00 0.32 -0.00-0.32 0.00-0.00 3 2.828540 -0.00 0.00 -0.00 0.00 -0.44 0.00 0.00 0.00 -0.00 0.00 -0.00-0.38 -0.00-0.00 0.00 0.00 -0.33-0.33 -0.00-0.00 0.00 0.00 -0.33-0.33 -0.00-0.00 -0.00 0.00 -0.00-0.46 4 3.849726 0.35 0.00 -0.35 0.00 0.00 0.00 0.00 0.29 -0.00-0.29 -0.00 0.00 -0.20-0.20 0.32 0.32 0.00 0.00 -0.32-0.32 0.20 0.20 0.00 0.00 -0.00 0.12 -0.00-0.12 -0.00 0.00 5 4.930208 -0.21 0.00 0.21 0.00 0.00-0.00 0.00-0.13 0.00 0.13 0.00-0.00 0.20 0.20 0.21 0.21 -0.00-0.00 -0.21-0.21 -0.20-0.20 -0.00-0.00 -0.00 0.52 0.00-0.52 0.00-0.00 6 5.203297 -0.08 0.00 -0.08 0.00 0.00 0.00 -0.00-0.25 -0.00-0.25 -0.00-0.00 -0.11-0.11 -0.05-0.05 -0.00-0.00 -0.05-0.05 -0.11-0.11 -0.00-0.00 -0.00-0.63 -0.00-0.63 0.00-0.00 7 6.142422 0.00 0.00 -0.00 0.00 0.00-0.00 0.00 0.00 0.00 0.00 -0.00-0.00 -0.00-0.00 -0.00-0.00 -0.59-0.40 -0.00-0.00 0.00 0.00 0.59 0.40 -0.00-0.00 0.00 0.00 -0.00-0.00 8 7.000273 -0.00 0.00 -0.00 0.00 -0.89-0.00 0.00 0.00 -0.00 0.00 -0.00 0.26 -0.00-0.00 0.00 0.00 0.19 0.19 0.00 0.00 -0.00-0.00 0.19 0.19 -0.00-0.00 -0.00-0.00 -0.00 0.09 9 7.184468 0.67-0.00 0.67-0.00 -0.00-0.00 -0.00-0.21 -0.00-0.21 -0.00 0.00 0.05 0.05 0.04 0.04 0.00 0.00 0.04 0.04 0.05 0.05 0.00 0.00 -0.00-0.03 -0.00-0.03 0.00 0.00 10 8.237461 -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 0.20 0.00 0.20 0.00-0.00 0.07 0.07 0.46 0.46 -0.00-0.00 0.46 0.46 0.07 0.07 -0.00-0.00 -0.00-0.17 -0.00-0.17 -0.00 0.00 11 10.064120 -0.33 0.00 0.33-0.00 -0.00 0.00 -0.00 0.14 -0.00-0.14 -0.00-0.00 -0.35-0.35 -0.15-0.15 0.00 0.00 0.15 0.15 0.35 0.35 0.00 0.00 0.00 0.29 -0.00-0.29 0.00-0.00 12 12.050401 0.00 0.00 0.00 0.00 -0.10-0.00 0.00-0.00 0.00-0.00 -0.00 0.32 -0.00-0.00 -0.00-0.00 -0.31-0.31 -0.00-0.00 0.00 0.00 -0.31-0.31 -0.00 0.00 0.00-0.00 -0.00 0.72 13 18.583901 0.05 0.00 0.05-0.00 0.00 0.00 0.00 0.32 0.00 0.32 0.00-0.00 0.37 0.37 -0.17-0.17 0.00 0.00 -0.17-0.17 0.37 0.37 0.00 0.00 -0.00-0.24 -0.00-0.24 0.00-0.00 14 19.658994 0.33 0.00 -0.33 0.00 0.00-0.00 -0.00-0.54 0.00 0.54 0.00-0.00 -0.17-0.17 -0.07-0.07 0.00 0.00 0.07 0.07 0.17 0.17 0.00 0.00 0.00 0.17 -0.00-0.17 0.00-0.00 15 40.181463 -0.21-0.00 -0.21 0.00 -0.00-0.00 0.00-0.50 0.00-0.50 0.00 0.00 0.30 0.30 0.08 0.08 -0.00-0.00 0.08 0.08 0.30 0.30 -0.00-0.00 0.00 0.10 -0.00 0.10 -0.00 0.00
Optical dielectric constant tensor is in BaTiO3-WuCohenGGA/force-constant-matrix/perovskite-Gamma.out.
% less perovskite-Gamma.out : Dielectric tensor, in cartesian coordinates, j1 j2 matrix element dir pert dir pert real part imaginary part 1 7 1 7 6.8691464565 0.0000000000 1 7 2 7 0.0000000000 0.0000000000 1 7 3 7 0.0000000000 0.0000000000 2 7 1 7 0.0000000000 0.0000000000 2 7 2 7 6.8691464565 0.0000000000 2 7 3 7 0.0000000000 0.0000000000 3 7 1 7 0.0000000000 0.0000000000 3 7 2 7 0.0000000000 0.0000000000 3 7 3 7 6.8691464565 0.0000000000 :
We can find the calculated Born effective charges for each atom in the file of BaTiO3-WuCohenGGA/force-constant-matrix/perovskite-Gamma.out. There are two ways of calculations of effective charges, (from electric field response) and (from phonon response). They must be identical within some error.
% less perovskite-Gamma.out : Effective charges, in cartesian coordinates, (from electric field response) if specified in the inputs, asr has been imposed j1 j2 matrix element dir pert dir pert real part imaginary part 1 1 1 7 2.7419582957 0.0000000000 2 1 1 7 0.0000000000 0.0000000000 3 1 1 7 0.0000000000 0.0000000000 1 2 1 7 7.4934093087 0.0000000000 2 2 1 7 0.0000000000 0.0000000000 3 2 1 7 0.0000000000 0.0000000000 1 3 1 7 -5.9318277473 0.0000000000 2 3 1 7 0.0000000000 0.0000000000 3 3 1 7 0.0000000000 0.0000000000 1 4 1 7 -2.1492074350 0.0000000000 2 4 1 7 0.0000000000 0.0000000000 3 4 1 7 0.0000000000 0.0000000000 1 5 1 7 -2.1492081943 0.0000000000 2 5 1 7 0.0000000000 0.0000000000 3 5 1 7 0.0000000000 0.0000000000 :
The direction of the Gamma_15 soft mode and The direction to the minimum are not same in principle. Using one of them, we determine the effective charge Z_star and the effective mass mass_amu.
Z_star = 10.33 = 2.7419582957 * 0.166 + 7.4934093087 * 0.770 + -2.1492074350 * -0.202 + -2.1492074350 * -0.202 + -5.9318277473 * -0.546 mass_amu = 38.24 = 137.327*0.166**2 + 47.867*0.770**2 + 15.9994*(2*0.202**2 +0.546**2)
We select eigenvalues and make BaTiO3-WuCohenGGA/force-constant-matrix/eigenvalues2j.in. Using feram-X.YY.ZZ/src/eigenvalues2j.F, we can calculate P_kappa2 and j1, ..., j7.
% cat eigenvalues2j.in DDB_a = -3.812330 DDB_b = 34.256065 DDB_c = -2.844881 DDB_d = -2.285745 DDB_e = 32.665721 DDB_f = 27.741413 DDB_g = 0.0 a0 = 3.98596961387263 Z_star = 10.33 epsilon_inf = 6.8691464565 % feram-X.YY.ZZ/src/eigenvalues2j < eigenvalues2j.in ../../src/eigenvalues2j.F: 43: BEGIN: Version 0.14.07 ../../src/eigenvalues2j.F: 61: FILENAME: stdin ../../src/param_module.F:109: BEGIN: read_Param(). DDB_a = -3.812330 DDB_b = 34.256065 DDB_c = -2.844881 DDB_d = -2.285745 DDB_e = 32.665721 DDB_f = 27.741413 DDB_g = 0.0 a0 = 3.98596961387263 Z_star = 10.33 epsilon_inf = 6.8691464565 ../../src/param_module.F:284: END: read_Param(). ../../src/param_module.F:290: BEGIN: make_Param(). ../../src/param_module.F:313: END: make_Param(). j_1 = -2.0840250430 [eV/Angstrom^2] = -0.0214464062 [Hartree/Bohr^2] j_2 = -1.1290411983 [eV/Angstrom^2] = -0.0116188029 [Hartree/Bohr^2] j_3 = 0.6894579816 [eV/Angstrom^2] = 0.0070951143 [Hartree/Bohr^2] j_4 = -0.6113408159 [eV/Angstrom^2] = -0.0062912216 [Hartree/Bohr^2] j_5 = 0.0000000000 [eV/Angstrom^2] = 0.0000000000 [Hartree/Bohr^2] j_6 = 0.2768966803 [eV/Angstrom^2] = 0.0028495045 [Hartree/Bohr^2] j_7 = 0.0000000000 [eV/Angstrom^2] = 0.0000000000 [Hartree/Bohr^2] P_kappa2 = 8.1460516421 [eV/Angstrom^2] = 0.0838298622 [Hartree/Bohr^2] j = -2.08403 -1.12904 0.68946 -0.61134 0.00000 0.27690 0.00000 [eV/Angstrom^2] a0 = 3.98597 [Angstrom] Z_star = 10.33000 epsilon_inf = 6.86915 ../../src/eigenvalues2j.F:126: END
P_kappa2(old) + [kappa - kappa(Gamma_TO)] = 8.1460516421 + [-1.51821042113588 - (-3.812330/2)] = 8.1460516421 + 0.38795457886412 = 8.53400622096412 = P_kappa2(new)
Takeshi Nishimatsu (t-nissie{at}imr.tohoku.ac.jp)