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Let us consider a crystal made-up with N unit cells and having Born-von Karman bound-
ary condition of macroscopic periodicity. Each unit cell is indexed by vector R, a unit cell
contains atoms indexed by I (I = 1, · · · , Natom), and mass of each atom is MI , as depicted in
Fig. 1. Atomic displacements qIα(R) from their equilibrium positions can have three indepen-
dent Cartesian directions α, for instance α = x, y, z.

The atomic displacements qIα(R) are governed by the many-body potential Φ. This real
function Φ can be expanded as

Φ = Φ0 +
∑
RIα

ΦIα(R) qIα(R) +
∑
RIα

∑
R′Jβ

qIα(R) ΦIα,Jβ(R, R′) qJβ(R′) + · · · , (1)

where Φ0 is the equilibrium value,

ΦIα(R) =

(
∂Φ

∂qIα(R)

)
0

, (2)

and

ΦIα,Jβ(R,R′) =

(
∂2Φ

∂qIα(R)∂qJβ(R′)

)
0

. (3)

The subscript zero implies that the derivatives are evaluated at the equilibrium configuration.
In the equilibrium position the second term on the right-hand side of (1) vanishes. ΦIα,Jβ(R, R′)
is real and the condition of translational invariance applied to it yields the following results:

ΦJβ,Iα(R′, R) = ΦIα,Jβ(R, R′) = ΦIα,Jβ(R − R′) (4)
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Figure 1: Crystal structure. Each unit cell is indexed by R. Atoms in a unit cell is indexed by
I.
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and ∑
R′J

ΦIα,Jβ(R, R′) = 0 . (5)

Equation (5) simply expresses the fact that the forces on any atom are zero if each atom is
displaced from equilibrium by the same amount. [3]

Hamiltonian for this system can be written

H =
∑
RIα

p2
Iα(R)

2MI

+
1

2

∑
RIα

∑
R′Jβ

qIα(R)ΦIα,Jβ(R − R′)qJβ(R′) , (6)

where pIα(R) is the momentum of the atom. From now, we transform this Hamiltonian 6
Let us Fourier-transform this Hamiltonian into k representation. We expand mass-weighted

atomic displacements
√

MI qIα(R) with Fourier coefficients q̃Iα(k),√
MI qIα(R) =

1√
N

∑
k

q̃Iα(k) exp(ik·R) , (7)

consistent with the inverse transformation

q̃Iα(k) =
1√
N

∑
R

√
MI qIα(R) exp(−ik·R) . (8)

Here N of k’s are defined in first Brillouin zone. We need the transformation from the mo-
mentum of the atom pIα(R) to the momentum p̃Iα(k) that is canonically conjugate to the
displacement q̃Iα(k). The transformation is

pIα(R) =
1√
N

∑
k

√
MI p̃Iα(k) exp(−ik·R) (9)

and

p̃Iα(k) =
1√
N

∑
R

1√
MI

pIα(R) exp(ik·R) . (10)

We verify that our choice of q̃Iα(k) and p̃Iα(k) satisfies the quantum commutation relation
for canonical variables. We form the commutator

[q̃Iα(k), p̃Jβ(k′)] =
1

N
..... . (11)

Because the operators qIα(R) and pIα(R) are conjugate, they originally satisfy the commutation
relation

[qIα(R), pJβ(R′)] = ih̄ δ(R,R′) δ(I, J) δ(α, β) , (12)

where δ(i, j) is the Kronecker delta symbol. Thus (11) becomes

[q̃Iα(k), p̃Jβ(k′)] =
1

N
ih̄..... = ih̄ δ(k, k′) δ(I, J) δ(α, β) , (13)

so that q̃Iα(k) and p̃Iα(k) are conjugate variables.
Using qIα(R) and pIα(R) are real, i.e., qIα(R) = q∗Iα(R) and pIα(R) = p∗Iα(R), relation

between -k and k, ... it can be evidently shown that

q̃Iα(−k) = q̃∗Iα(k) (14)

and
p̃Iα(−k) = p̃∗Iα(k) . (15)
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Furthermore, we introduce the Fourier expansion of the second derivative of many-body
potential ΦIα,Jβ(R),

ΦIα,Jβ(R) =
1

N

∑
k

√
MIMJ Φ̃Iα,Jβ(k) exp(ik·R) , (16)

and, consequently, inverse transformation becomes

Φ̃Iα,Jβ(k) =
∑
R

ΦIα,Jβ(R)√
MIMJ

exp(−ik·R) . (17)

Using symmetricity of the real function ΦIα,Jβ(R), it can be evidently shown that Φ̃Iα,Jβ(k) is
an Hermitian matrix

Φ̃Jβ,Iα(k) = Φ̃∗
Iα,Jβ(k) (18)

and
Φ̃Iα,Jβ(−k) = Φ̃∗

Iα,Jβ(k) . (19)

Substituting Fourier expantions of (7), (9) and (16) into the Hamiltonian (6), we get ...
It may be a good approximation[4, 1, 2] to assume that the true ion-ion interaction in a crys-

tal is consisting of shor-range interaction somewhat described in ... and long-range interaction
exactly described in ....

Φ̃Iα,Jβ(k) = (20)

(To be continued.)
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Figure 2: Dipole Crystal
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