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Let us consider a crystal made-up with N unit cells and having Born-von Karman bound-
ary condition of macroscopic periodicity. Each unit cell is indexed by vector R, a unit cell
contains atoms indexed by I (I =1, -+, Nuom), and mass of each atom is M, as depicted in
Fig. 1. Atomic displacements g, (R) from their equilibrium positions can have three indepen-
dent Cartesian directions «, for instance a = z, v, 2.

The atomic displacements g, (R) are governed by the many-body potential ®. This real
function ® can be expanded as

O =P+ Y Pra(R)qa(R)+ D D q1a(R) Prays(R, R)qss(R) +-- -, (1)
Rla RIaR'J

where @ is the equilibrium value,
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The subscript zero implies that the derivatives are evaluated at the equilibrium configuration.

In the equilibrium position the second term on the right-hand side of (1) vanishes. ®;, j3(R, R')

is real and the condition of translational invariance applied to it yields the following results:

Py510(R, R) = P10 y5(R, R') = @10 5(R — R (4)
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Figure 1: Crystal structure. Fach unit cell is indexed by R. Atoms in a unit cell is indexed by
I.



and
Z (I)[O{’JQ(R, RI) - O . (5)
RJ
Equation (5) simply expresses the fact that the forces on any atom are zero if each atom is
displaced from equilibrium by the same amount. [3]
Hamiltonian for this system can be written

I Z pla ), 1 Z 3" Gra(R)®1055(R — R)qss(R) (6)
RIoeR’Jﬁ

where pr,(R) is the momentum of the atom. From now, we transform this Hamiltonian 6
Let us Fourier-transform this Hamiltonian into k representation. We expand mass-weighted
atomic displacements /M q;o(R) with Fourier coefficients ¢, (k),

M;qro(R) = \/— Z qra(k) exp(ik-R) | (7)
consistent with the inverse transformation
- 1 .
dra(k) = ﬁ ER: VM qra(R) exp(—ik-R) . (8)

Here N of k’s are defined in first Brillouin zone. We need the transformation from the mo-
mentum of the atom pr,(R) to the momentum pj, (k) that is canonically conjugate to the
displacement Gy, (k). The transformation is

pra(R) = jﬁ S \/M; f1a(K) exp(—ik- R) (9)

and

ﬁla \/—Z pla R) eXp(ZkR) : (10)

We verify that our choice of ¢, (k) and p;. (k) satisfies the quantum commutation relation
for canonical variables. We form the commutator

[Gra(k), pis (K] = —...... (11)

Because the operators qr,(R) and pr,(R) are conjugate, they originally satisfy the commutation
relation

[q1a(R),pss(R)] = ih6(R,R')0(I,J)d(a, B) , (12)
where (i, 7) is the Kronecker delta symbol. Thus (11) becomes
~ ~ / 1 . . /
[Gra(k), Dss(K)] = N@h ..... =iho(k,K)o(I,J)0(a, B) , (13)

so that ¢r.(k) and pj.(k) are conjugate variables.
Using qro(R) and pro(R) are real, ie., qro(R) = ¢}, (R) and pr.(R) = p;,(R), relation
between -k and k, ... it can be evidently shown that

Gra(—k) = Gra(k) (14)

and
Pra(—k) = pra(k) . (15)



Furthermore, we introduce the Fourier expansion of the second derivative of many-body
potential @, j5(R),

1 — .
@IQ7J5(R> = N Z MIMJ q)]a”]/g(k) exp(zk-R) s (16)
k

and, consequently, inverse transformation becomes

RS> ‘I’\;CL> exp(—ik-R) . (17)

Using symmetricity of the real function @7, s3(R), it can be evidently shown that @, s5(k) is
an Hermitian matrix

©5.10(k) = 07, 45(k) (18)
and . .
Pra,g5(—k) = @7, 15(K) - (19)

Substituting Fourier expantions of (7), (9) and (16) into the Hamiltonian (6), we get ...

It may be a good approximation[4, 1, 2] to assume that the true ion-ion interaction in a crys-
tal is consisting of shor-range interaction somewhat described in ... and long-range interaction
exactly described in ....

Dro,p(k) = (20)

(To be continued.)
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Figure 2: Dipole Crystal



